SINGULARIDADES

13.1. Nos interesan las singularidades aisladas de las funciones holomorfas. Es útil también considerar anillos

$$A_{R_1,R_2}(z_0) = \{z \colon R_1 < |z - z_0| < R_2\}.$$

para luego tomar el caso particular $R_1 = 0$ (o tomar el límite $R_1 \to 0$).

SERIES DE LAURENT

13.2. Sea f holomorfa en $A_{R_1,R_2}(0)$. Para cualquier $z \in A_{R_1,R_2}(0)$ podemos tomar r_1,r_2 tales que $R_1 < r_1 < |z| < r_2 < R_2$, así

$$z \in \overline{A_{r_1,r_2}(0)} \subseteq A_{R_1,R_2}(0).$$

La frontera $\partial A_{r_1,r_2}(0)$ se forma de dos circunferencias; se pueden juntar con un par de segmentos radiales cercanos, para obtener una curva cerrada que es es homotópica a una circunferencia pequeña $\partial B_{\epsilon}(z)$ en $A_{R_1,R_2}(0) - \{z\}$. Por la Fórmula Integral de Cauchy,

$$f(z) = \frac{1}{2\pi i} \int_{\partial B_{r_2}(0)} \frac{f(w)}{w - z} dw - \frac{1}{2\pi i} \int_{\partial B_{r_1}(0)} \frac{f(w)}{w - z} dw$$
$$= f^+(z) + f^-(z).$$

(Si f fuera holomorfa en todo $B_{R_2}(0)$, entonces tendríamos $f^-=0$ mientras $f^+=f$.) Expansión en series:

$$2\pi i f^{+}(z) = \int_{\partial B_{r_{2}}(0)} \frac{f(w)}{w - z} dw \stackrel{|w| \ge |z|}{=} \int_{\partial B_{r_{2}}(0)} \frac{f(w)}{w} \frac{1}{1 - \frac{z}{w}} dw$$
$$= \int_{\partial B_{r_{2}}(0)} f(w) \sum_{0}^{\infty} \frac{z^{k}}{w^{k+1}} dw \stackrel{\text{unif}}{=} \sum_{0}^{\infty} \left(\int_{\partial B_{r_{2}}(0)} \frac{f(w) dw}{w^{k+1}} \right) z^{k};$$

$$2\pi i f^{-}(z) = -\int_{\partial B_{r_{1}}(0)} \frac{f(w)}{w - z} dw \stackrel{|w| \leq |z|}{=} \int_{\partial B_{r_{1}}(0)} \frac{f(w)}{z} \frac{1}{1 - \frac{w}{z}} dw$$
$$= \int_{\partial B_{r_{1}}(0)} f(w) \sum_{0}^{\infty} \frac{w^{k}}{z^{k+1}} dw \stackrel{\text{unif}}{=} \sum_{0}^{\infty} \left(\int_{\partial B_{r_{1}}(0)} f(w) w^{k} \right) \frac{1}{z^{k+1}}.$$

Por eso definimos

$$a_k = \frac{1}{2\pi i} \int_{\partial B_r(0)} \frac{f(w)}{w^{k+1}} dw$$

para todo $k \in \mathbb{Z}$ (el valor preciso de r no importa). Entonces

$$f^{+}(z) = \sum_{k=0}^{\infty} a_k z^k, \quad f^{-}(z) = \sum_{k=-\infty}^{-1} a_k z^k$$

Se verifica que para $k \geq 0$, $|a_k| \leq C/R_2^k$, mientras que para k < 0, $|a_{-k}| \leq C/R_1^k$. Así $\sum_0^\infty a_k z^k$ converge para $|z| < R_2$, y $\sum_1^\infty a_k t^k$ converge para $|t| < R_1$. Nótemos que $\sum_{-\infty}^{-1} a_k z^k$ es una serie de potencias aplicada a 1/z y por tanto converge para $|z| > R_1$.

<u>Proposición.</u> Si f es holomorfa en $A_{R_1,R_2}(z_0)$, entonces existen coeficientes $a_k \in \mathbb{C}$ tales que $f(z) = \sum_{k=-\infty}^{\infty} a_k (z-z_0)^k$ para todo $z \in A_{R_1,R_2}(z_0)$.

Esta serie se llama la serie de Laurent para f centrada en el punto z_0 (o más precisamente, en el anillo $A_{R_1,R_2}(z_0)$).

SINGULARIDADES REMOVIBLES

13.3. Sea f holomorfa en $A_{0,r}(z_0) = B_r(z_0) - \{z_0\}$. Entonces tenemos para 0 < r' < r,

$$\left| \int_{\partial B_{r'}(z_0)} f(z) \, dz \right| = \left| \int_{\partial B_{\epsilon}(z_0)} f(z) \, dz \right| \le (2\pi\epsilon) \sup_{|z-z_0|=\epsilon} |f|$$

cuando $0 < \epsilon < r'$. Este sup podría tender al ∞ cuando $\epsilon \to 0$. Para evitarlo, podremos agregar una hipótesis como $|f| \leq M$. Con esto

$$\int_{\partial B_{r'}(z_0)} f(z) \, dz = 0$$

para todo r', i.e., el residuo es cero. Como consecuencia, $\int_{\gamma} f(z) dz = 0$ para curvas cerradas $\gamma \subseteq B_r(z_0)$ (aún sin las hipótesis del T. de Cauchy). De esto podemos definir $F(z) = \int_{\gamma_z} f(w) dw$ y obtener F' = f. Esto nos permite definir una función \tilde{f} en todo $B_r(z_0)$ mediante

$$\tilde{f}(z) = \begin{cases} f(z), & z \neq z_0, \\ F'(z_0), & z = z_0, \end{cases}$$

que es holomorfa y extiende f, es decir, $\tilde{f}|_{A_{0,r}(z_0)}=f$.

<u>Teorema.</u> (de Riemann sobre las Singularidades Removibles) Sea f holomorfa en $A_{0,r}(z_0)$. Supóngase que $|z-z_0||f(z)| \to 0$ cuando $z \to z_0$ (es decir, $f(z) = o(\frac{1}{|z-z_0|})$). Entonces la singularidad de f en z_0 es removible. (Es decir, f es restricción de una función holomorfa en $B_r(z_0)$.)

La demostración de arriba requería completar unas tecnicalidades para asegurar que F realmente está definida en z_0 .

<u>Demostración.</u> (2) Mostrar, con un sencillo estimado, que para $k \ge 0$, se tiene $\oint f(z)(z-z_0)^k dz = 0$. Entonces la serie de Laurent $\sum_{-\infty}^{\infty} a_k(z-z_0)^k$ tiene $a_k = 0$ para k < 0, o sea $f = f^+$. \square <u>Demostración.</u> (3) Sea

$$g(z) = \begin{cases} (z - z_0)f(z), & z \neq z_0, \\ 0, & z = z_0. \end{cases}$$

Entonces g es continua, y con bastante trabajo, se demuestra que $\int_{\gamma} g \, dz = 0$. Luego por el Teorema de Morera g es holomorfa, se puede expresar $g(z) = \sum_{1}^{\infty} b_k (z - z_0)^k$. Así $f(z) = \sum_{0}^{\infty} b_{k+1} (z - z_0)^k$ y f tiene una extensión holomorfa, $f(z_0) = b_1 = g'(z_0)$.

Demostración. (4) Sea

$$g(z) = \begin{cases} (z - z_0)^2 f(z), & z \neq z_0, \\ 0, & z = z_0. \end{cases}$$

Entonces

$$\frac{g(z) - g(z_0)}{z - z_0} = (z - z_0)f(z) \to 0$$

cuando $z \to z_0$. Por lo tanto $g'(z_0)$ existe. Por el Teorema de Goursat, g es holomorfa en $B_r(z_0)$, con $g(z_0) = g'(z_0) = 0$. Se puede expresar $g(z) = \sum_{0}^{\infty} b_k (z - z_0)^k$. Así $f(z) = \sum_{0}^{\infty} b_{k+2} (z - z_0)^k$ y f tiene una extensión holomorfa, $f(z_0) = b_2 = (1/2)g''(z_0)$.

<u>Ejemplo.</u> Habiendo demostrado de alguna manera que $\frac{\operatorname{sen} z}{z} \to 1$ cuando $z \to 0$, sabemos que la singularidad en z = 0 es removible.

13.4. El Teorema de las Singularidades Removibles generalmente se usa con un hipótesis más fuerte, "si f es acotada cerca de z_0 , entonces z_0 es una singularidad removible" o aún más fuerte, "si f tiene un límite en z_0 , entonces z_0 es una singularidad removible".

FUNCIONES MEROMORFAS

13.5. Definición. Una singularidad aislada z_0 de una función holomorfa f se llama un polo de f si $|f(z)| \to \infty$ cuando $z \to z_0$. Se dice que f es meromorfa en el dominio D si existe un subconjunto $E \subseteq D$ de puntos aislados de D tal que f es holomorfa en D - E y f tiene un polo en cada punto de E. ("Todas las singularidades de f son polos (o removibles).") Cuando f es un polo de f se escribe $f(f) = \infty$. (Con esto, se considera que f está "definida" en todos los puntos de f f .)

Ejemplo. Para $z_n = i/n$, tenemos $|e^{1/z_n}| = 1 \nrightarrow \infty$. Por lo tanto $f(z) = e^{1/z}$ no tiene un polo en z = 0. Eso a pesar del hecho de que para $z'_n = 1/n$, se tenga $|f(z'_n)| \to \infty$.

13.6. <u>Definición.</u> La <u>esfera de Riemann</u> es el conjunto $\widehat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$. Una <u>vecindad</u> en $\widehat{\mathbb{C}}$ del punto ∞ es cualquier conjunto que contenga un conjunto de la forma $\{\infty\} \cup \{z \in \mathbb{C} : |z| > R\}$. Decimos que $z_n \to \infty$ cuando $n \to \infty$ cuando $(\forall R > 0)(\exists N)(\forall n \ge N) |z_n| > R$ ó $z_n = \infty$.

<u>Ejemplo.</u> Sea $ad - bc \neq 0$. Entonces la funcion $f(z) = \frac{az + b}{cz + d}$ es un homeomorfismo de $\widehat{\mathbb{C}}$ a $\widehat{\mathbb{C}}$.

13.7. <u>Definición.</u> Sea D un dominio en $\widehat{\mathbb{C}}$. Sea $\infty \in D$. Decimos que f es <u>holomorfa</u> en ∞ si la función $t \mapsto f(1/t)$ es holomorfa en una vecindad t = 0. Similar para "meromorfa" en lugar de "holomorfa".

Proposición. $\widehat{\mathbb{C}}$ es compacto.

13.8. Cuando f tiene un polo en z_0 , su recíproco 1/f tiende a cero en z_0 . Por el Teorema de Riemann, 1/f tiene una singularidad removible en z_0 , y vale cero ahí.

<u>Definición.</u> El <u>orden</u> de un polo z_0 de f es el orden del cero de 1/f en z_0 .

El orden del polo puede calcularse como

mín $\{m: (z-z_0)^m f(z) \text{ tiene una singularidad removible en } z_0\}.$

<u>Proposición</u>. La serie de Laurent en un polo de una función meromorfa tiene un número finito de coeficientes no-cero con índice negativo:

$$f(z) = \sum_{k=-m}^{\infty} a_k (z - z_0)^k$$

donde m es el orden del polo de f en z_0 .

Proposición. Sea z_0 un polo de f de orden m. Entonces hay una vecindad V de z_0 tal que f es m-a-1 en $V \setminus \{z_0\}$. Para cada w_0 con $w_0 > R$ (grande) hay exactamente m soluciones de la ecuación $f(z) = w_0$ en $V \setminus \{z_0\}$.

(Esto se obtiene de las propiedades correspondientes de 1/f.)

Nota. Los polos de una función meromorfa son puntos aislados.

SINGULARIDADES ESENCIALES

13.9. <u>Definición.</u> Una singularidad aislada de una función holomorfa se llama una <u>singularidad esencial</u> cuando no es removible y no es un polo.

Removible	Polo	Esencial
∞	∞	∞
\sum	\sum	\sum
0	$\frac{2}{-N}$	$-\infty$
tiene límite en $\mathbb C$	$limite=\infty$	ni límite, ni acotada

13.10. Teorema. (Casorati-Weierstrass) Sea z_0 una singularidad esencial de la función holomorfa f. Sea $c \in \mathbb{C}$ arbitrario. Entonces cada vecindad de z_0 contiene una sucesión cuya imagen bajo f converge a c. (La imagen de toda vecindad perforada de una singularidad esencial es densa en \mathbb{C} .)

Un resultado más fuerte:

<u>Teorema.</u> (grande de Picard) Sea z_0 una singularidad esencial de la función holomorfa f. Entonces

$$(\exists a) \ (\forall c \in \mathbb{C} - \{a\}) \ (\forall r > 0) \ (\exists z \in A_{0,r}(z_0)) \ f(z) = c.$$

Demostración. (se omite)

Variable compleja #14

RESIDUOS

14.1. Recordemos que

$$\operatorname{Res}_{z_0} f = \frac{1}{2\pi i} \int_{\partial B_r(z_0)} f(w) \, dw = a_{-1}$$

donde $f(z) = \sum_{-\infty}^{\infty} a_k (z - z_0)^k$.

Nota. Si z_0 es una singularidad removible de f, entonces $\mathrm{Res}_{z_0}f=0$, pero ¡no recíprocamente!

14.2. Proposición. Sea f con un polo de orden 1 en z_0 . Entonces

$$\operatorname{Res}_{z_0} f = \lim_{z \to z_0} (z - z_0) f(z).$$

Ejemplo.
$$\operatorname{Res}_{z=z_0} \frac{g(z)}{z-z_0} = g(z_0)$$
 si g es holomorfa.

Ejemplo. Sea $a \neq 0$,

$$\operatorname{Res}_{a} \frac{1}{z^{2} - a^{2}} = \operatorname{Res}_{a} \frac{1}{(z - a)(z + a)} = \frac{1}{2a};$$

$$\operatorname{Res}_{a} \frac{1}{z^{3} - a^{3}} = \operatorname{Res}_{a} \frac{1}{(z - a)(z^{2} + az + a^{2})} = \frac{1}{3a^{2}};$$

$$\operatorname{Res}_{a} \frac{1}{z^{4} - a^{4}} = \operatorname{Res}_{a} \frac{1}{(z - a)(z + a)(z^{2} + a^{2})} = \frac{1}{4a^{3}};$$

$$\operatorname{Res}_{a} \frac{1}{h(z) - h(a)} = \operatorname{Res}_{a} \frac{1}{(z - a)} \frac{z - a}{h(z) - h(a)} = \frac{1}{h'(a)} \text{ si } h'(a) \neq 0.$$

Proposición. Sean g, h holomorfas; sea z_0 un cero simple de h; sea $g(z_0) \neq 0$. Entonces

$$\operatorname{Res}_{z_0} \frac{g}{h} = \frac{g(z_0)}{h'(z_0)}.$$

14.3. Representación de funciones racionales en fracciones parciales. Ejemplo: encontrar las constantes A, B, C en

$$\frac{1}{z(z^2 - 4z + 8)} = \frac{A}{z} + \frac{Bz + C}{z^2 - 4z + 8}.$$

En z = 0 sabemos que

$$\operatorname{Res}_{0} \frac{1}{z(z^{2} - 4z + 8)} = \frac{1}{(z^{2} - 4z + 8)} \bigg|_{z=0} = \frac{1}{8},$$

$$\operatorname{Res}_{0} \frac{A}{z} = A, \quad \operatorname{Res}_{0} \frac{Bz + C}{z^{2} - 4z + 8} = 0,$$

luego A = 1/8. Para encontrar B, C,

$$\frac{Bz+C}{z^2-4z+8} = \frac{1}{z(z^2-4z+8)} - \frac{1}{8z} = \frac{-z^2+4z}{8z(z^2-4z+8)},$$

o sea $8z(Bz+C)=-z^2+4z$. De esto se despejan B,C inmediatamente.

Como alternativa, ya conociendo A y poniendo $z^2 - 4z + 8 = (z - \alpha)(z - \beta)$, tenemos los residuos

$$\operatorname{Res}_{\alpha} \frac{Bz+C}{z^2-4z+8} = \frac{B\alpha+C}{\alpha-\beta}, \quad \operatorname{Res}_{\beta} \frac{Bz+C}{z^2-4z+8} = \frac{B\beta+C}{\beta-\alpha}, \text{ etc.},$$

у

$$\frac{1}{z^2 - 4z + 8} = \frac{1}{(z - \alpha)(z - \beta)} = \frac{\operatorname{Res}_{\alpha}}{z - \alpha} + \frac{\operatorname{Res}_{\beta}}{z - \beta},$$

luego con $\alpha\beta = 8$, $\alpha + \beta = 4$ se llega al mismo resultado para B, C.

14.4. Proposición. Para calcular residuos en polos de mayor orden. Sea

$$f(z) = \frac{a_{-n}}{(z - z_0)^n} + \dots + \frac{a_{-1}}{z - z_0} + a_0 + a_1(z - z_0) + \dots$$

con $a_{-n} \neq 0$. La siguiente función es holomorfa,

$$(z-z_0)^n f(z) = a_{-n} + a_{-n+1}(z-z_0) + \dots + a_{-1}(z-z_0)^{n-1} + a_0(z-z_0)^n + \dots$$

y queremos despejar el coeficiente de $(z-z_0)^{n-1}$, que es

$$a_{-1} = \frac{1}{(n-1)!} \left. \frac{d^{n-1}}{dz^{n-1}} \right|_{z=a} \left((z-z_0)^n f(z) \right)$$

donde $\operatorname{ord}_{z_0} f = -n$.

Ejemplo. $f(z) = \frac{1}{(z^2 - a^2)^3}$ tiene un polo de orden 3 en z = a. Por lo tanto

$$\operatorname{Res}_{a} f = \frac{1}{(3-1)!} \frac{d^{2}}{dz^{2}} \left(\frac{1}{(z+a)^{3}} \right) = \frac{1}{2} \frac{12}{(z+a)^{5}} \Big|_{a} = \frac{6}{(2a)^{5}} = \frac{3}{16a^{5}}.$$

14.5. <u>Definición</u>. Una <u>curva de Jordan</u> es una curva simple y cerrada. (No tiene que ser rectificable.)

<u>Teorema.</u> (de la Curva de Jordan) Sea $\gamma \subseteq \mathbb{C}$ una curva de Jordan. Entonces el complemento $\mathbb{C} - \gamma$ tiene exactamente dos componentes conexos, que son un dominio acotado y un dominio no-acotado (llamadas la región <u>interior</u> y la región <u>exterior</u> a γ). La región interior es simplemente conexa. (Se omite la demostración.)

<u>Definición.</u> D es un <u>dominio de Jordan</u> cuando su frontera ∂D es una curva de Jordan y D es la región interior de esta curva.

 $\underline{\text{Nota.}}\,$ No todo dominio simplemente conexo y acotado es un dominio de Jordan.

Unas versiones más del Teorema de Cauchy:

Proposición. Sea D un dominio de Jordan; sea $\gamma\subseteq D$ una curva cerrada. Sea f holomorfa en D. Entonces $\int_{\gamma}f(z)\,dz=0$.

<u>Proposición.</u> Sea D cualquier dominio en \mathbb{C} ; sea f holomorfa en D; sea γ una curva de Jordan (rectificable) en D tal que la región interior de γ está contenida en D. Entonces $\int_{\gamma} f(z) \, dz = 0$.

14.6. Teorema. (de los Residuos) Sea γ una curva simple y cerrada (suave por pedazos). Sea f una función meromorfa en un dominio que contiene tanto a γ como a la región interior de γ , con ningún polo de f sobre γ . Entonces

$$\int_{\gamma} f(z) dz = 2\pi i \sum_{\substack{z \text{ den-} \\ \text{tro de } \gamma}} \text{Res}_{z} f.$$

Nota. La sumatoria es efectivamente sobre un conjunto finito, de los polos de f dentro de γ , pues en los demás puntos se tiene $\text{Res}_z f = 0$.

<u>Nota.</u> Se puede cambiar la hipótesis "meromorfa" en "holomorfa salvo por singularidades aisladas". Veremos la demostración más adelante.

14.7. Proposición. $\operatorname{Res}_{z_0} \frac{f'}{f} = \operatorname{ord}_{z_0} f$. (Residuo de la derivada logarítmica)

<u>Teorema.</u> (Principio del Argumento) Sea f meromorfa en D. Sea γ una curva de Jordan en D con su región interior también en D, y que no pase por polos o ceros de f. Contemos los ceros y polos de f según sus multiplicidades. Entonces

$$\#\{\text{ceros de } f \text{ dentro de } \gamma\} - \#\{\text{polos de } f \text{ dentro de } \gamma\}$$

$$= \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz.$$

14.8. Nota. Cuando $n = \operatorname{ord}_{z_0} f$, tenemos

$$\operatorname{Res}_{z_0} \frac{zf'(z)}{f(z)} = nz_0, \quad \operatorname{Res}_{z_0} \frac{z^2f'(z)}{f(z)} = nz_0^2,$$

etc. El mismo razonamiento de la demostración del Principo del Argumento da

$$\frac{1}{2\pi i} \int_{\gamma} \frac{zf'(z)}{f(z)} dz = \sum_{z} \begin{pmatrix} \text{ceros den-} \\ \text{tro de } \gamma \end{pmatrix} - \sum_{z} \begin{pmatrix} \text{polos den-} \\ \text{tro de } \gamma \end{pmatrix},$$

$$\frac{1}{2\pi i} \int_{\gamma} \frac{z^2 f'(z)}{f(z)} \, dz = \sum \begin{pmatrix} \text{cuadrados} \\ \text{de ceros} \end{pmatrix} - \sum \begin{pmatrix} \text{cuadrados} \\ \text{de polos} \end{pmatrix},$$

etc.

ÍNDICE (Winding Number)

14.9. Dada una curva (continua) $\gamma \colon [a,b] \to \mathbb{C} - \{0\}$, describiremos la variación neta de arg $\gamma(t)$ cuando t varía de a a b. Observemos que no se vale escribir simplemente "arg $\gamma(b) - \arg \gamma(a)$ " por la ambiguedad del argumento módulo 2π . Puesto que γ mantiene una distancia positiva ϵ del origin y es uniformemente continua, hay una partición

$$a, a + \delta, a + 2\delta, \ldots, b$$

tal que $\gamma([a+k\delta, a+(k+1)\delta])$ está dentro de un sector de ángulo menor que $2\pi/3$. Luego el cambio neto de arg $\gamma(t)$ en $[a+k\delta, a+(k+1)\delta]$ es

$$\arg \gamma(a + (k+1)\delta) - \arg \gamma(a + k\delta)$$

que tiene un valor único con la condición de que su valor absoluto es $<2\pi/3$. El cambio neto de arg $\gamma(t)$ en [a,b] es la suma de éstos. Si se reduce el valor de δ este cambio neto queda igual. Esto no requiere que γ sea suave.

Para γ suave, se puede describir como sigue. Cubrimos γ con discos sucesivos que no toquen el origen. Cada disco es simplemente conexo, hay una rama holomorfa de $\log z = \log |z| + i \arg z$. Entonces

$$\int_{\gamma(t_k)}^{\gamma(t_{k+1})} \frac{dz}{z} = \log z \Big|_{\gamma(t_k)}^{\gamma(t_{k+1})} = \log \frac{|\gamma(t_{k+1})|}{|\gamma(t_k)|} - i \left(\arg \gamma(t_{k+1}) - \arg \gamma(t_k)\right)$$

(si se usara otra rama de $\log z$, la discrepancia de una constante se cancelaría y se obtendría el mismo resultado.)

14.10. <u>Definición</u>. Sea $p \in \mathbb{C}$. Sea γ una curva cerrada (suave por pedazos) en $\mathbb{C} - \{p\}$. Entonces el <u>índice</u> de γ alrededor de p es

$$n(\gamma, p) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - p}.$$

- (I) $n(\gamma, p) \in \mathbb{Z}$.
- (II) Si p, q están en la misma componente conexa de $\mathbb{C} \gamma$, entonces $n(\gamma, p) = n(\gamma, q)$.
- (III) Si p está en la componente no acotada de $\mathbb{C} \gamma$, entonces $n(\gamma, p) = 0$.
- 14.11. Supóngase que f es holomorfa. Escribiendo w = f(z),

$$\#\{\text{ceros}\} \stackrel{\text{P.A.}}{=} \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \frac{1}{2\pi i} \int_{f(\gamma)} \frac{dw}{w} = n(f(\gamma), 0).$$

Por eso la imagen $f(\gamma)$ tiene información sobre los ceros de f. Esta interpretación en términos de índice es la razón por que se llama Principio del "Argumento".

Ejemplo. ¿Cuántas veces se anula el polinomio $P(z)=z^4+z^3+4z^2+2z+3$ en el primer cuadrante { Re z>0, Im z>0}?

14.12. <u>Teorema.</u> (Fundamental del Álgebra) Sea $P(z) = a_n z^n + \cdots + a_1 z + a_0$, $a_n \neq 0$, $n \geq 1$. Entonces la ecuación P(z) = 0 tiene exactamente n soluciones en \mathbb{C} , contadas con sus multiplicidades.

("Multiplicidad" significa que si P(z) - c tiene un cero de orden m, entonces dicho cero cuenta como m soluciones de la ecuación P(z) = c.)

14.13. Teorema. (de Rouché) Sean f, g meromorfas en D. Sea $\gamma \subseteq D$ una curva simple y cerrada que no pasa por polos de f o de g, tal que el dominio D_{γ} que encierra esté contenido en D. Supóngase que

$$|f(z) - g(z)| < |g(z)|$$

para cada $z \in \gamma$. (Esto implica que γ no pasa por ceros de f o de g.) Entonces

 $\#\{\text{ceros de } f \text{ dentro de } \gamma\} - \#\{\text{polos de } f \text{ dentro de } \gamma\}$ $= \#\{\text{ceros de } g \text{ dentro de } \gamma\} - \#\{\text{polos de } g \text{ dentro de } \gamma\}$

Variable compleja #15

HOMOLOGÍA

15.1. Se escribe $\gamma \simeq 0$ para indicar que γ es homotópica a un punto como lazo en D.

<u>Definición.</u> $\gamma \sim 0$ en D (γ es <u>homóloga</u> a cero en D) significa ($\forall a \notin D$) $n(\gamma, a) = 0$.

Recordemos que si a, a' están en la misma componente conexa de $\mathbb{C} - \gamma$, entonces $n(\gamma, a) = n(\gamma, a')$.

Proposición. $\gamma \simeq 0$ en $D \implies \gamma \sim 0$ en D.

Nota. $\gamma \sim 0$ en $D \implies \gamma \simeq 0$ en D.

15.2. Lema. Sea $\gamma \subseteq \mathbb{C}$ una curva cerrada, Δ un disco de tal suerte que $\gamma \cap \Delta$ sea el diámetro vertical de Δ , trazado por γ t^+ veces en la dirección de abajo hacia arriba, t^- veces de arriba hacia abajo. Sea $t=t^+-t^-$. Tómense puntos $a,a'\in \Delta-\gamma$, con a a la izquierda y a' a la derecha del diámetro. Entonces

$$n(\gamma, a) = n(\gamma, a') + t.$$

<u>Teorema.</u> (de Cauchy para homología) Sea f holomorfa en D y sea $\gamma \sim 0$ en D. Entonces $\int_{\gamma} f(z) \, dz = 0$.

<u>Teorema.</u> (Formula Integral de Cauchy para homología) Sea f holomorfa en D, sea $\gamma \subseteq D$ una curva cerrada que no pasa por $z_0 \in D$. Sea $\gamma \sim 0$ en D. Entonces

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z - z_0} dz = n(\gamma, z_0) f(z_0).$$

15.3. El Teorema de Cauchy también se aplica a ciclos que son sumas formales $\sum_{1}^{N} n_{i} \gamma_{i}$ donde las γ_{i} son curvas cerradas, y donde se definen

$$\int_{\gamma} f(z) dz = \sum_{1}^{N} n_{i} \int_{\gamma_{i}} f(z) dz \text{ y } n(\gamma, p) = \sum_{1}^{N} n_{i} n(\gamma_{i}, p). \text{ Cuando}$$
 algunas de estas curvas son idénticas, se puede indicarlo con coeficientes, $\gamma = \sum_{1}^{N} n_{i} \gamma_{i}$, luego $n(\gamma, p) = \sum_{1}^{N} n_{i} n(\gamma_{i}, p)$.

Corolario. (del T. de Cauchy para homología) Supóngase que

$$(\forall a \notin D) \ n(\gamma_1, a) = n(\gamma_2, a)$$
. Sea f holomorfa en D . Entonces
$$\int_{\gamma_1} f(z) dz = \int_{\gamma_2} f(z) dz.$$

15.4. Teorema. (de los Residuos para homología) Sea f holomorfa salvo por singularidades aisladas en D. Sea $\gamma \subseteq D$ que no pase por ninguna singularidad de f. Sea $\gamma \sim 0$ en D. Entonces

$$\int_{\gamma} f(z)dz = 2\pi i \sum_{z \in D} n(\gamma, z) \operatorname{Res}_{z} f.$$

15.5. Teorema. (Principio del Argumento para homología) Sea f meromorfa en D. Sea $\gamma\subseteq D$ que no pase por ceros ni polos de f. Sea $\gamma\sim 0$ en D. Entonces

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{\substack{z \text{ un} \\ \text{cero} \\ \text{de } f}} n(\gamma, z) - \sum_{\substack{z \text{ un} \\ \text{polo} \\ \text{de } f}} n(\gamma, z)$$

donde se cuentan los ceros y polos según multiplicidades. Esto significa que cuando z es un cero de orden m, tiene que sumarse m veces el término correspondiente. Si se cuentan los ceros y polos una sola vez,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{\substack{z \text{ un} \\ \text{cero} \\ \text{de } f}} n(\gamma, z) \operatorname{ord}_{z} f - \sum_{\substack{z \text{ un} \\ \text{polo} \\ \text{de } f}} n(\gamma, z) (-\operatorname{ord}_{z} f).$$