VARIABLE COMPLEJA Lista 7

(entregar: 25 de octubre)

- (a) Sea $X \subseteq \mathbb{C}$ un subconjunto cerrado y acotado. Sea $f: X \to \mathbb{C}$ continua. 1. Demostrar: f es uniformemente continua.
 - (b) Sean $X,Y\subseteq\mathbb{C}$ cerrados y acotados. Sea $g\colon X\times Y\to\mathbb{C}$ continua. Demostrar: q es uniformemente continua.
- Computar $\int_{\partial B_1(0)} |z-1| |dz|$. 2.
- Descomponer el integrando de $\int_{\partial B_2(0)} \frac{dz}{z^2+1}$ en fracciones parciales, luego 3. usar la Fórmula Integral de Cauchy para evaluar la integral.
- Sea f holomorfa en el anillo $A_{R_1,R_2}(z_0)=\{z\in\mathbb{C}\colon\ R_1<|z-z_0|< R_2\}.$ Sea $a_k = \int_{B_r(z_0)} \frac{f(z)}{(z - z_0)^{k+1}} dz \text{ para } k \ge 0.$

 - (a) Demostrar que a_k no depende de r, donde $R_1 < r < R_2$. (b) Demostrar que $\sum_{0}^{\infty} a_k (z z_0)^k$ converge en $B_{R_2}(z_0)$.
- (a) Verificar la formula $d(|z|^2) = 2\text{Re }(\overline{z}dz)$. 5.
 - (b) Sea γ una curva cerrada dentro de un dominio D donde la funcion f es holomorfa. Demostrar que $\int_{\gamma} \overline{f(z)} f'(z) dz$ es imaginario.
- 6. Sea P un polinomio con coeficientes complejos. Sea $a \in \mathbb{C}$, R > 0. Demostrar que

$$\int_{\partial B_R(a)} P(z) d\overline{z} = -2\pi i R^2 P'(a).$$

Demostrar que no existe una función holomorfa f en una vecindad de un 7. punto $a \in \mathbb{C}$ tal que las derivadas satisfagan $|f^{(n)}(z)| > n!n^n$.