Variable compleja #4

FUNCIONES ARMÓNICAS

4.1. Sea V = p + iq la velocidad de un fluido en alguna región del plano. Algunas propiedades físicas del fluido corresponden a propiedades matemáticas de V:

<u>Ejemplo.</u> Dado un (sub)dominio de Jordan con frontera una curva suave parametrizada por z(t) = x(t) + iy(t) (|z'(t)| = 1), se calcula la cantidad neta de fluido que entra como sigue: el vector normal hacia dentro es $d\vec{n} = (-dy, dx)$, luego el <u>flujo</u> (neto) a través de la frontera es

$$\oint \vec{V} \cdot d\vec{n} = \oint (p, q) \cdot (-dy, dx) = \oint (q \, dx - p \, dy).$$

Decimos que el flujo es $\underline{\text{incompresible}}$ si el flujo es cero para cada subdominio de Jordan.

Ejemplo. La <u>circulación</u> alrededor de una curva cerrada es

$$\oint \vec{V} \cdot dz = \oint (p, q) \cdot (dx, dy) = \oint (p \, dx + q \, dy)$$

y el flujo se llama $\underline{\text{irrotacional}}$ si la circulación siempre es cero.

4.2. Fijemos (x_0, y_0) . Si V es incompresible, entonces la cantidad

$$\psi(x,y) = \int_{(x_0,y_0)}^{(x,y)} (q \, dx - p \, dy)$$

está bien definida en un área simplemente conexa (no depende del camino de integración); se llama el potencial de velocidad. Si V es irrotacional, entonces

$$\phi(x,y) = -\int_{(x_0,y_0)}^{(x,y)} (p \, dx + q \, dy)$$

está bien definida; se llama el potencial del fluido.

Supongamos que V es tanto irrotacional como incompresible. Entonces tenemos $\phi_x = -p = \psi_y$; $\phi_y = -q = -\psi_x$. Así la función

$$U = \phi + i\psi =$$
 (potencial del fluido) $+ i$ (potencial de velocidad)

1

es holomorfa, por lo que la velocidad $V=-\overline{U'}$ es antiholomorfa. Tanto ϕ como ψ son armónicas.

4.3. El gradiente

$$\nabla \phi = (\phi_x, \phi_y) = (-p, -q) = -V$$

es un vector paralelo a V y además perpendicular a las curvas de nivel $\phi = \mathrm{const}$:

$$\phi(x(t), y(t)) = c \implies \phi_x x' + \phi_y y' = 0 \implies \nabla \phi \perp z'(t)$$

donde z'(t) es el tangente a la curva de nivel. Por eso las curvas de nivel de ϕ son perpendiculares a V y también perpendiculares a las curvas de nivel de ψ .

<u>Teorema.</u> Un fluido incompresible e irrotacional fluye a lo largo de las curvas de nivel de su potencial de velocidad ψ .

4.4. Proposición. Sea u armónica en D ($u \in Ar D$) y sea $f: D' \to D$ holomorfa. Entonces $u \circ f$ es armónica en D'. Además, las curvas de nivel de $u \circ f$ son f^{-1} (curvas de nivel de u).

Esto permite convertir un problema de potencial en un dominio a un problema de potencial en otro dominio.

Problema de Dirichlet: $\begin{cases} \Delta u = 0 \text{ en } D, \\ u = h \text{ en } \partial D. \end{cases}$

Problema de Neumann: $\begin{cases} \Delta u = 0 \text{ en } D, \\ \frac{\partial u}{\partial \vec{n}} = h \text{ en } \partial D. \end{cases}$

Operador Dirichlet-a-Neumann: Dada h en ∂D , resolver el problema de Dirichlet, lo cual da una funcion u en el interior. Tomar la derivada normal $\partial u/\partial \vec{n}$, en los puntos de ∂D .

Operador de Hilbert: Dada h en ∂D , resolver el problema de Dirichlet, lo cual da una funcion u en el interior. Tomar un conjugado armónico v para u (quizás normalizado por v(0) = 0 o algo similar) y restringir a ∂D .

(Se usan los mismos nombres para los conceptos análogos correspondientes a otros operadores en lugar de Δ .)

4.5. PROPIEDADES DE FUNCIONES ARMÓNICAS

<u>Coordenadas Polares.</u> $x = r \cos \theta$, $y = r \sin \theta$.

$$\frac{\partial \partial(x,y)}{\partial \partial(r,\theta)} = \begin{pmatrix} x_r & x_\theta \\ y_r & y_\theta \end{pmatrix} = \begin{pmatrix} x/r & -y \\ y/r & x \end{pmatrix}$$
$$\frac{\partial \partial(r,\theta)}{\partial \partial(x,y)} = \begin{pmatrix} r_x & r_y \\ \theta_x & \theta_y \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ \frac{\sin\theta}{r} & -\frac{\cos\theta}{r} \end{pmatrix}$$
$$\Delta u = u_{xx} + u_{yy} = r(ru_r)_r + u_{\theta\theta}$$

Por eso $u_1(z) = \log |z| = \log r$ y $u_2(z) = \arg z = \theta$ son funciones armónicas de (x, y).

4.6. <u>Teorema.</u> (Propiedad del Valor Medio PVM) Sea $u \in Ar D$. Entonces cada vez que $\overline{B_r(z_0)} \subseteq D$ se tiene

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta.$$

<u>Definición.</u> Decimos que $u \in \mathcal{C}(D, \mathbb{R})$ <u>satisface el PVM</u> si $(\forall z_0 \in D)(\forall r > 0)$ $\overline{B_r(z_0)} \subseteq D \implies u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta$. Decimos que $u \in \mathcal{C}(D, \mathbb{R})$ <u>satisface el PVM en pequeños radios</u> si $(\forall z_0 \in D)(\exists r_0 > 0)(\forall r < r_0) \dots$

4.7. <u>Teorema.</u> (Principio del Máximo PMax) Sea $u \in \mathcal{C}(D, \mathbb{R})$ que satisface la PVM en pequeños radios en D. Si u no es idénticamente constante, entonces no hay punto de D en que u tome su valor máximo.

Nota. u satisface PVM en pequeños radios $\implies -u$ satisface PVM en pequeños radios $\implies -u$ no toma máximo si no es constante $\implies u$ no toma mínimo si no es constante. ("Principio del Mínimo")

Corolario. Sea D un dominio acotado, $u \in \mathcal{C}(\operatorname{cerr} D, \mathbb{R}), u|_D$ armónica, $u|_{\partial D} = 0$. Entonces u = 0.

<u>Corolario.</u> Una función armónica en un dominio acotado que tenga una extensión continua a la frontera está determinada por estos valores en la frontera.

PROBLEMA DE DIRICHLET

4.8. Fijemos $h: \partial D \to \mathbb{R}$ continua. ¿Existe $u \in \operatorname{Ar} D$ con extensión continua a la frontera $u|_{\partial D} = h$? (Cuando D no es acotado, se podrá poner una condición de continuidad en el ∞ .)

<u>Definición.</u> D es un <u>dominio de Dirichlet</u> si para toda $h \in \mathcal{C}(\partial D, \mathbb{R})$ la respuesta a la pregunta es "sí".

<u>Ejemplo.</u> $D = \{0 < |z| < 1\}$. Definamos h(0) = 0, h(z) = 1 para |z| = 1. Veremos que si existiera una solución al problema de Dirichlet, tendría que ser armónica en z = 0 también (es decir, armónica en $B_1(0)$), lo cual contradiría el Principio del Máximo. Así que D no es un dominio de Dirichlet.

4.9. La solución al Problema de Dirichlet para un disco es fácil y se llama la fórmula de Poisson. Consideremos u armónica en $B_{R+\epsilon}(0)$ e investiguemos la relación entre sus valores en $\partial B_R(0)$ y en un punto $p \in B_R(0)$. La transformación de Möbius

$$z = T(w) = \frac{R(w + p/R)}{(\overline{p}/R)w + 1} = \frac{R(Rw + p)}{\overline{p}w + R}$$

lleva $\{|w|<1\}$ a $\{|z|< R\}$ con $0\mapsto p$. La función $\widetilde u=u\circ T,$ o sea $\widetilde u(w)=u(z),$ es armónica en $B_1(0)$ y por la PVM

$$u(p) = \widetilde{u}(0) = \frac{1}{2\pi} \int_0^{2\pi} \widetilde{u}(e^{i\phi}) d\phi = \frac{1}{2\pi} \int_0^{2\pi} u(e^{i\theta}) \frac{d\phi}{d\theta} d\theta.$$

El núcleo de Poisson se define como $(1/2\pi)(d\phi/d\theta)$. (Una función en $[0,2\pi]$ que es \mathbb{R} -valuada, pero que depende de p.) Para calcularlo, veamos la inversa

$$e^{i\phi} = w = \frac{Rz - Rp}{-\overline{p}z + R^2}$$

donde ahora $z = Re^{i\theta}$. Luego $dw = iw d\phi$, $dz = iz d\theta$, $d\phi/d\theta = (dw/dz)(z/w)$,

$$\begin{split} \frac{d\phi}{d\theta} &= \frac{R(R^2 - |p|^2)}{(-\overline{p}z + R^2)^2} \cdot z \cdot \frac{-\overline{p}z + R^2}{R(z - p)} \\ &= \frac{(R^2 - |p|^2)z}{(-\overline{p}z + \overline{z}z)(z - p)} \\ &= \frac{R^2 - |p|^2}{|z - p|^2}. \end{split}$$

Esto se puede expresar de muchas formas. La fórmula

$$\frac{z+p}{z-p} = \frac{(z+p)(\overline{z}-\overline{p})}{(z-p)(\overline{z}-\overline{p})}$$

nos da

$$\frac{d\phi}{d\theta} = \frac{R^2 - |p|^2}{|z - p|^2} = \operatorname{Re} \frac{z + p}{z - p}.$$

<u>Teorema.</u> Sea $u \in \mathcal{C}(\overline{B_R(0)}, \mathbb{R})$, u armónica en $B_R(0)$. Sea $p = R_0 e^{i\theta_0}$ donde $0 \le R_0 < R$. Entonces

$$u(p) = u(R_0 e^{i\theta_0}) = \frac{1}{2\pi} \int_{\theta=0}^{2\pi} \frac{R^2 - R_0^2}{|Re^{i\theta} - R_0 e^{i\theta_0}|^2} u(Re^{i\theta}) d\theta$$
$$= \frac{1}{2\pi} \int_{\theta=0}^{2\pi} \frac{R^2 - R_0^2}{R^2 - 2RR_0 \cos(\theta - \theta_0) + R_0^2} u(Re^{i\theta}) d\theta.$$

Definición. Núcleo de Poisson

$$K(z,\theta) = \frac{1}{2\pi} \operatorname{Re} \frac{e^{i\theta} + z}{e^{i\theta} - z} = \frac{1}{2\pi} \frac{1 - |z|^2}{|e^{i\theta} - z|^2}$$

para $|z| < 1, 0 \le \theta \le 2\pi$.

4.10. Sea $h \in \mathbb{C}([0, 2\pi], \mathbb{R})$. Definición. La integral de Poisson de h es

$$P[h](z) = P_h(z) = \int_0^{2\pi} K(z,\theta)h(\theta) d\theta$$

para |z| < 1.

Se tiene $P: h \mapsto P_h: \mathcal{C}([0, 2\pi], \mathbb{R}) \to \operatorname{Ar}(B_1(0))$. También h podría ser cualquier función integrable. Para el disco $B_R(z_0)$ hay un kernel $K((z-z_0)/R, \theta)$ dando un operador $P_{z_0,R}(h)$.

Proposición. (1) P es un operador lineal.

- $\overline{(2) P \text{ es un operador positivo.}}$
- (3) P_c es constante cuando c es constante.
- (4) Si $c_1 \leq h(\theta) \leq c_2$ para todo θ , entonces $c_1 \leq P_h(z) \leq c_2$ para todo z.

4.11. Proposición. (Schwarz) Sea $h:[0,2\pi] \to \mathbb{R}$ continua por pedazos (o integrable+acotada) y sea h continua en θ_0 . Entonces

$$\lim_{\substack{z \to e^{i\theta_0} \\ |z| < 1}} P_h(z) = h(\theta_0).$$

4.12. Teorema. u satisface la PVM en pequeños radios $\implies u$ es armónica.

Proposición. Ar D es cerrado en $\mathcal{C}(D, \mathbb{R})$.

4.13. Proposición. (Desigualdad de Harnack) Sea $u \in Ar B_R(0)$ con $u \ge 0$ Entonces para cada $z \in B_R(0)$ se tiene

$$\frac{R - |z|}{R + |z|}u(0) \le u(z) \le \frac{R + |z|}{R - |z|}u(0).$$

<u>Proposición.</u> (Teorema de Liouville) Sea $u \in Ar \mathbb{C}$, u acotada. Entonces u es constante.

Proposición. (Principio de Harnack) Sea $\{u_n\} \subseteq Ar D$ con $u_n \le u_{n+1}$. Entonces o bien

- (a) $u_n \to \infty$ uniformemente en compactos de D, o bien
- (b) existe $u \in \operatorname{Ar} D$ tal que $u_n \to u$ en $\operatorname{Ar} D$.

VARIABLE COMPLEJA #5

FUNCIONES SUBARMÓNICAS

5.1. <u>Definición.</u> Sea $v \in \mathcal{C}(D, \mathbb{R})$. Se dice que v es <u>subármonica</u> si $(\forall z_0 \in D)(\forall r : \overline{B_r(z_0)} \subseteq D)$

$$v(z_0) \le \frac{1}{2\pi} \int_0^{2\pi} v(z_0 + re^{i\theta}) d\theta.$$

Se dice que v es subármonica en pequeños radios si $(\forall z_0 \in D)(\exists r_0 > 0)(\forall r < r_0) \dots$

Se dice que v es <u>superármonica</u> si -v es subármonica.

Nota. subarmónica : armónica :: convexa : lineal "Una función subarmónica queda debajo de la función armónica con los mismos valores de frontera."

5.2. Proposición. v subarmónica en pequeños radios en $D \implies v$ satisface el PMax en D.

Proposición. v es subarmónica en $D \iff$

$$(\forall D_1 \subseteq D)(\forall u_1 \in Ar D_1) \ v - u_1 \text{ satisface el PMax en } D_1.$$

 $\frac{\text{Proposición.}}{\text{subarmónica}} \text{ subarmónica} \iff \text{subarmónica en pequeños radios.}$ $\frac{\text{Subarmónica}}{\text{subarmónica}} + \text{superarmónica} \iff \text{armónica.}$

- 5.3. Proposición. (1) v subarmónica, $c \ge 0 \implies cv$ subarmónica.
 - (2) v_1, v_2 subarmónicas $\implies v_1 + v_2$ subarmónica.
 - (3) v_1, v_2 subarmónicas \implies máx (v_1, v_2) subarmónica.
 - (4) v subarmónica en D; $\overline{D}_1 = \overline{B_r(z_0)} \subseteq D$. Defínase $h = v|_{\partial D_1}$ y

$$\widetilde{v} = \left\{ \begin{array}{ll} v & \text{afuera de } D_1 \\ P_{z_0,R}(h) & \text{dentro de } D_1. \end{array} \right.$$

Entonces \widetilde{v} es subarmónica.

SOLUCIÓN AL PROBLEMA DE DIRICHLET

5.4. Proposición. v subarmónica en el dominio acotado $D, u \in \mathcal{C}(\operatorname{cerr} D, \mathbb{R}),$ u armónica en D. Supóngase que $(\forall \zeta_0 \in \partial D)$

$$\limsup_{\substack{z \to \zeta_0 \\ z \in D}} v(z) \le u(\zeta_0)$$

("v no tiende a más de u en ∂D "). Entonces $v(z) \leq u(z)$ para todo $z \in D$.

En el contexto de esta proposición, para u armónica con extensión continua a ∂D , y para $z \in D$ se tiene obviamente

$$u(z) = \sup\{v(z): v \text{ subarmónica en } D,$$

$$\lim\sup_{\substack{z' \to \zeta_0 \\ z' \in D}} v(z') \le u(\zeta_0) \text{ para todo } \zeta_0 \in \partial D\}.$$

<u>Definición.</u> $D \subseteq \mathbb{C}$ dominio acotado, $h: \partial D \to \mathbb{R}$ acotada. La <u>familia</u> de Perron de h es

Perr
$$(h) = \{v : v \text{ subarmónica en } D,$$

$$\lim \sup_{\substack{z \to \zeta_0 \\ z \in D}} v(z) \le h(\zeta_0) \text{ para } \zeta_0 \in \partial D \}.$$

Nota. Perr $(h) \neq \emptyset$ porque $-M \in \text{Perr }(h)$ donde $|h(\zeta)| \leq M$. Para $v \in \text{Perr }(h)$ se tiene $v \leq M$ en D porque M es armónica.

La función de Perron de h es

$$u_h(z) = \sup\{v(z): v \in Perr(h)\}, z \in D.$$

Nota. Si existe una solución al problema de Dirichlet con valores de frontera h, esta solución tiene que estar en Perr (h) y por lo tanto es igual a u_h .

<u>Teorema.</u> $u_h \in Ar D$.

5.5. <u>Definición.</u> Sea $\zeta_0 \in \partial D$. Una <u>barrera</u> para D en ζ_0 es una función $\omega \in \mathcal{C}(\operatorname{cerr}(D), \mathbb{R})$ que es armónica en D y que satisface $\omega > 0$ en $\partial D - \{\zeta_0\}$, mientras $\omega(\zeta_0) = 0$.

<u>Ejemplo.</u> Supóngase que $\zeta_0 \in \partial D$ y que el segmento $[\zeta_0, \zeta_1]$ está en el exterior de D salvo por el extremo ζ_0 . Entonces hay una rama continua de $\sqrt{(z-\zeta_0)/(z-\zeta_1)}$ en D, y un ángulo α tal que

$$\operatorname{Im} \left[e^{-i\alpha} \sqrt{\frac{z - \zeta_0}{z - \zeta_1}} \right] > 0$$

en $\partial D - \{\zeta_0\}$, vale 0 en ζ_0 . Ésta es una barrera para D en ζ_0 .

5.6. D sigue siendo un dominio acotado:

<u>Teorema.</u> Sea $h: \partial D \to \mathbb{R}$ una función continua. Sea $\zeta_0 \in \partial D$ y supóngase que existe una barrera para D en ζ_0 . Entonces la función de Perron u_h se extiende continuamente a $D \cup \{\zeta_0\}$ con el valor $u_h(\zeta_0) = h(\zeta_0)$.

<u>Corolario.</u> D es un dominio de Dirichlet $\iff D$ tiene una barrera en cada punto de su frontera.

<u>Teorema.</u> Sea $\zeta_0 \in \partial D$. Supóngase que la componente conexa de $\widehat{\mathbb{C}} - D$ que contiene ζ_0 contiene puntos otros que ζ_0 . Entonces D tiene una barrera en ζ_0 .

Nota. Es posible que D tenga una barrera en ζ_0 aunque la componente conexa de $\widehat{\mathbb{C}} - D$ que contiene ζ_0 sea $\{\zeta_0\}$.

<u>Teorema.</u> D es simplemente conexo y acotado $\implies D$ es un dominio de Dirichlet.

(Demostración después.)