1.1.

VARIABLE COMPLEJA #1
ESPACIOS DE FUNCIONES C(D, C), H(D), M(D)

Proposicién. Dado K compacto: C'(K, C) es un espacio métrico com-
pleto con la métrica d(f, g) = supgk |f — gl

Pero para dominios, sup, | f — g| podria ser infinito. Un rellenado de
un dominio D C C es una sucesién {K,} donde D = J;° K,,, K, es
compacto, K, C int K, 11.

Construccion de un rellenado particular:

K, = By(0) N {z € D: dist(,0D) > ~}.
n

Proposicién. Dado un rellenado { K}, y K C D compacto. Entonces
K C K, para algin n.

Dado un rellendado {K,} se definen para f,g € C(D,C):

B B _N g pilf9)
pn(f,g)—slt{lflf g, o(f.9) ;2 L+ pu(f,9)

Lema. a: [0,00) — [0, 00) suave, «(0) = 0, o/ > 0, &” < 0. Entonces
a(s) +a(t) > a(s + ).

b
Corolario. Sia,b,c >0, a+ b > ¢, entonces a + > ¢ )
l4a 140 1+4c

Proposicién. p es una métrica en C(D, C).
(Su valor exacto depende del rellenado.)

cpto
Proposicién. (1) Sea e > 0. Entonces existen 6 > 0, K C D tales que

sgp!f—gl <0 = p(f.9) <e

cpto

(2) Sean § > 0, K C D. Entonces existe € > 0 tal que

p(f,9) <e — Sl}l{plf—gl <.
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1.2.

1.5.

Teorema. (a) Sea O C C(D,C). Entonces

cpto
O es abierto <= (Vf € 0)(36 >0, K pg D)
{g: s;1(p]f—g|<5}§(9.

(b) fn = f en C(D,C) siy sélo si f,, — f uniformente en cada
subconjunto compacto de D.

(“La topologia descrita en el Teorema es metrizable, y no depende
del rellenado.”)

Definicién. Un subconjunto F C C(D,C) es una familia normal si
cada sucesion {f,} en F tiene una subsucesién {f,,} que converge a
un elemento de C(D, C) (no necesariamente en F).

H(D)={f: D— C, f holomorfa} C C(D,C)

Proposicién. (a) H(D) es cerrado en C(D, C).
(b) der: f+ f’ es una funcién continua H(D) — H(D).

Corolario. H(D) es un espacio métrico completo con la métrica p.

Teorema. (de Hurwitz) Sea f, € H(D), f. — f. Supdngase que
ninguna f, se anula en D. Entonces o bien f no se anula en D, o bien

f=0.

Teorema. Sea f, € H(D), f, — f. Supéngase que ninguna f, tiene
més de k ceros en D (contando su multiplicidad). Entonces o bien
f no tiene més de k ceros en D (contando su multiplicidad), o bien

f=0.



2.1.

2.2.

VARIABLE COMPLEJA #2

FRACCIONES PARCIALES, TEOREMA DE
MITTAG-LEFFLER

Descomposicién en fracciones parciales de una funcién racional R,
donde los polos de R son z1, ..., z, (distintos):

R(z) = Ru(2) + Zj:Pj (Z _1 Z)

donde R, P; son polinomios. Los P; tienen término constante nulo,
P;(0) = 0.

Una funciéon meromorfa f € M(C) puede tener una infinidad de
polos; no necesariamente se descompone como

“f(z +ZP (Z_Z)

2
Ejemplo. f(2) = Se;ﬂz = + %Z + O(z*) puede escribirse

senmz Zn +gn

para cualquier n finito, pero la serie no converge tomando n — oc.

Seria atin menos claro qué hacer con los puros términos para j > 0
(o cualquier otro subconjunto de j).

Teorema. (de Mittag-Lefler) Sean z; distintos, z; — oo, y sean P,
polinomios con término constante nulo. Entonces

(a) Existe una funcién meromorfa f € M(C) con precisamente las
partes singulares Pj(1/(z — 2;));

(b) Toda tal f puede escribirse

f(2) = g(z) + Y _(Py(



2.3.

3.1.

donde los p;(z) son polinomios y g(z) es una funcién entera.

Ejemplo.
N e IR
J#0
Ejemplo.
- 9 o0
SeI71T2 Tz ; ﬁ
Ejemplo.

1 1 1
t = - E - .
mcotmz z—l— ( —l—j)

e \F T
VARIABLE COMPLEJA #3

PRODUCTOS INFINITOS,
FACTORIZACION DE WEIERSTRASS

El principio general a aplicarse sera que cada concepto relacionado
con productos infinitos puede pensarse como si fuera la “exponencial”
del concepto correspondiente para sumatorias, pues

« , Y
sz _ eElogz] _ BECJ .

En un producto queremos admitir la posibilidad de z; = 0, entonces
hay que admitir sumandos (; = —00 en una sumatoria. Suponiendo
que hay un nimero finito de sumandos —oo, diremos que la sumatoria
converge a —oo cuando los términos distintos del —oo forman una
serie convergente. Esto es diferente de una suma como Z;il(—l) que
diverge a —oo.

Definicién. Sean z; € C. Decimos que [ [ z; converge cuando (i) sélo

un numero finito de los z; son cero: hay N talque j > N —> z; # 0,
y (ii) []j_y 2; tiende a un limite no-cero cuando n — oco.
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3.2.

3.8.

(pensar qué corresponderia en las sumatorias si el limite en (ii) fuera
cero)

El valor del producto convergente es 0 si algin factor es 0, de otro
modo el valor es lim,,_,, H?Zl ;.

o0

1
Ejemplo. H(l — —) diverge a cero.
J

J=1

Proposicién. sz converge — z; — 1 cuando j — oo.

Proposicién. Sean 1 + b; = z; ¢ (—o00,0]. Entonces H(l + b;)

converge <= Z log(1 + b;) converge, donde log significa la rama
principal, | arglog z | < .

Ejemplo. H(—l)j no converge, pero H |(—1)7] si converge!

Definicién. Decimos que H(l + b;) converge absolutamente cuando

Z log(1 + b;) converge absolutamente.

Proposicién. H(l + b;) converge absolutamente <=

Z b; converge absolutamente.

FACTORIZACION DE WEIERSTRASS

.z .7 [ee] ]
Aunque la representacién de una funcién holomorfa f(z) =) ¢;27
es 1util para muchas cosas, da poca informacién sobre los ceros de f.
Para polinomios, tenemos p(z) = (z —ay)(z —az) - - - (2 — a,) pero por
lo que ya sabemos de productos, seria mejor escribir

(1= )= )

Igual que con el estudio de las fracciones parciales, no podemos es-
perar que [[(1 — z/a;) converja siempre.

Ejemplo. sen 7z deberia tener factores 1—z/j pero [[(1—2/7) diverge

cuando z # 0.



3.4.

Se ve que
z
H(l — —) converge absolutamente, y uniformemente en compactos
a;
1
— Z — converge absolutamente.
a;

7 « R __ 52 — 9]
Esto pasara cuando hay “pocos” ceros (pensar en a; = j° o a; = 27).
La rapidez de que los ceros tienden al infinito es una forma de medir
el “tamano” de una funcién entera.

Definicién. Sean a; — oo (valores no necesariamente distintos). El

exponente de convergencia de la sucesién {a;} es el minimo entero

tal que
1
) ]+t <0

Otra medida de una funcién entera es su tasa de crecimiento. Supo-
niendo que

[f(2)] < e
para |z| grande, entonces log | f| < a|z|*; loglog |f| < loga+ A log |2|;

loglog | f(2)] a4 loga < ade
loglz| 7 loglz| T

para |z| grande.

Definicién. El orden de una funcién f € H(C) es el minimo niimero
A tal que (Ve > 0)(Vz grande)

A+
[f(2)] < el
Si no existe tal nimero, el orden es A = oo. Tenemos

log 1
A = i sup 28108 /()]

Cuando A < oo, el tipo de f es el minimo a tal que (Ve > 0)(Vz grande)

[f(2)] < et

Ejemplo. sen z tiene orden 1; sen 2z tiene orden 1; sen? z tiene orden
1; sen 22 tiene orden 2.



3.5.

Definicién. Un producto candnico para la sucesién {a;} es cualquiera
de la forma

[e.e]
1 2,1 3 1 i
11 (1 - ) ens T S R G
1 %

Depende de la eleccién de los grados mj; de los polinomios py,, (z/a;).
Con la terminologia de un factor canénico, es decir,

EO(U) = 1- U,

En(u) = (1- u)epm(“) = (1- u)e“+%“2+§“3+“‘+i“m (m>1),

un producto canénico es []7° B, (2/a;).

Teorema. (Factorizacién de Weierstrass) (a) Sea a; — co. Entonces
existe una funcion entera cuyos ceros son precisamente estos valores
a; (repetidos segtin su multiplicidad).

(b) Sea f € H(C). Entonces existen enteros m, m; y una funcién
entera ¢ tales que

f(z) = zmet®) H <1 — i) o TG s )T

a .
j=m+1 J

Corolario. Sea f € M(C). Entonces existen gq, g2 € H(C) tales que
f=a1/9.

2z
Ejemplo. = 1 — 5)e/m
jemplo. cosmz H ( m)e

m impar

Nota. Hay resultados similares para H(D) y M(D) para cualquier
dominio D C C.

Definicién. Sea a; — oo y supdngase que {a;} tiene exponente de
convergencia finito pu. Entonces decimos que el producto candnico
para {a;} es [] B,(=/a,).

Definicién. Si f € H(C) y si los ceros {a;} de f tienen exponen-
te de convergencia finito y si la funcién g(z) en la factorizacién de

Weierstrass es un polinomio, entonces decimos que el género de f es

p = max( exp. de conv. de {a;}, grad(g) ).

7



Teorema. (de Hadamard) Sea f € H(C) de género p y orden A.

Entonces
p<A<p+1l

(se omite la demostracién)
En particular, si f es una funcién entera de orden 1 (o sea, de creci-

miento no més que exponencial), entonces f admite una factorizacién
sin el factor e9(),



