
VARIABLE COMPLEJA #1

ESPACIOS DE FUNCIONES C(D,C), H(D), M(D)

1.1. Proposición. Dado K compacto: C(K,C) es un espacio métrico com-
pleto con la métrica d(f, g) = supK |f − g|.

Pero para dominios, supD |f − g| podŕıa ser infinito. Un rellenado de
un dominio D ⊆ C es una sucesión {Kn} donde D =

⋃∞
1 Kn, Kn es

compacto, Kn ⊆ intKn+1.

Construcción de un rellenado particular:

Kn = Bn(0) ∩ {z ∈ D : dist (z, ∂D) ≥ 1

n
}.

Proposición. Dado un rellenado {Kn}, y K ⊆ D compacto. Entonces
K ⊆ Kn para algún n.

Dado un rellendado {Kn} se definen para f, g ∈ C(D,C):

ρn(f, g) = sup
Kn

|f − g|, ρ(f, g) =
∞∑
n=1

2−n ρn(f, g)

1 + ρn(f, g)
.

Lema. α : [0,∞) → [0,∞) suave, α(0) = 0, α′ > 0, α′′ < 0. Entonces
α(s) + α(t) ≥ α(s+ t).

Corolario. Si a, b, c ≥ 0, a+ b ≥ c, entonces
a

1 + a
+

b

1 + b
≥ c

1 + c
.

Proposición. ρ es una métrica en C(D,C).
(Su valor exacto depende del rellenado.)

Proposición. (1) Sea ϵ > 0. Entonces existen δ > 0, K
cpto

⊆D tales que

sup
K

|f − g| < δ ρ(f, g) < ϵ.

(2) Sean δ > 0, K
cpto

⊆D. Entonces existe ϵ > 0 tal que

ρ(f, g) < ϵ sup
K

|f − g| < δ.
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Teorema. (a) Sea O ⊆ C(D,C). Entonces

O es abierto ⇐⇒ (∀f ∈ O)(∃δ > 0, K
cpto

⊆ D)

{g : sup
K

|f − g| < δ} ⊆ O.

(b) fn → f en C(D,C) si y sólo si fn → f uniformente en cada
subconjunto compacto de D.
(“La topoloǵıa descrita en el Teorema es metrizable, y no depende
del rellenado.”)

1.2. Definición. Un subconjunto F ⊆ C(D,C) es una familia normal si
cada sucesión {fn} en F tiene una subsucesión {fnj

} que converge a
un elemento de C(D,C) (no necesariamente en F).

H(D) = {f : D → C, f holomorfa} ⊆ C(D,C)

Proposición. (a) H(D) es cerrado en C(D,C).
(b) der : f 7→ f ′ es una función continua H(D) → H(D).

Corolario. H(D) es un espacio métrico completo con la métrica ρ.

1.3. Teorema. (de Hurwitz) Sea fn ∈ H(D), fn → f . Supóngase que
ninguna fn se anula en D. Entonces o bien f no se anula en D, o bien
f ≡ 0.

Teorema. Sea fn ∈ H(D), fn → f . Supóngase que ninguna fn tiene
más de k ceros en D (contando su multiplicidad). Entonces o bien
f no tiene más de k ceros en D (contando su multiplicidad), o bien
f ≡ 0.

2



VARIABLE COMPLEJA #2

FRACCIONES PARCIALES, TEOREMA DE
MITTAG-LEFFLER

2.1. Descomposición en fracciones parciales de una función racional R,
donde los polos de R son z1, . . . , zn (distintos):

R(z) = Rn(z) +
n∑
1

Pj

(
1

z − zj

)
donde Rn, Pj son polinomios. Los Pj tienen término constante nulo,
Pj(0) = 0.

Una función meromorfa f ∈ M(C) puede tener una infinidad de
polos; no necesariamente se descompone como

“ f(z) = g(z) +
∞∑
1

Pj

(
1

z − zj

)
”

2.2. Ejemplo. f(z) =
π

sen πz
=

1

z
+

π2

6
z +O(z3) puede escribirse

π

sen πz
=

n∑
−n

(−1)j

z − j
+ gn(z)

para cualquier n finito, pero la serie no converge tomando n → ∞.

Seŕıa aún menos claro qué hacer con los puros términos para j > 0
(o cualquier otro subconjunto de j).

Teorema. (de Mittag-Leffler) Sean zj distintos, zj → ∞, y sean Pj

polinomios con término constante nulo. Entonces
(a) Existe una función meromorfa f ∈ M(C) con precisamente las
partes singulares Pj(1/(z − zj));
(b) Toda tal f puede escribirse

f(z) = g(z) +
∞∑
j=1

(Pj(
1

z − zj
)− pj(z))
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donde los pj(z) son polinomios y g(z) es una función entera.

2.3. Ejemplo.

π

sen πz
=

1

z
+
∑
j ̸=0

(−1)j
(

1

z − j
+

1

j

)
+ g(z).

Ejemplo.

π2

sen2 πz
=

∞∑
−∞

1

(z − j)2
.

Ejemplo.

π cotπz =
1

z
+
∑
j ̸=0

(
1

z − j
+

1

j

)
.

VARIABLE COMPLEJA #3

PRODUCTOS INFINITOS,

FACTORIZACION DE WEIERSTRASS

3.1. El principio general a aplicarse será que cada concepto relacionado
con productos infinitos puede pensarse como si fuera la “exponencial”
del concepto correspondiente para sumatorias, pues

“
∏

zj = eΣ log zj = eΣ ζj ” .

En un producto queremos admitir la posibilidad de zj = 0, entonces
hay que admitir sumandos ζj = −∞ en una sumatoria. Suponiendo
que hay un número finito de sumandos −∞, diremos que la sumatoria
converge a −∞ cuando los términos distintos del −∞ forman una
serie convergente. Esto es diferente de una suma como

∑∞
j=1(−1) que

diverge a −∞.

Definición. Sean zj ∈ C. Decimos que
∏

zj converge cuando (i) sólo

un número finito de los zj son cero: hayN tal que j ≥ N zj ̸= 0,
y (ii)

∏n
j=N zj tiende a un ĺımite no-cero cuando n → ∞.
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(pensar qué correspondeŕıa en las sumatorias si el ĺımite en (ii) fuera
cero)

El valor del producto convergente es 0 si algún factor es 0, de otro
modo el valor es ĺımn→∞

∏n
j=1 zj.

Ejemplo.
∞∏
j=1

(1− 1

j
) diverge a cero.

3.2. Proposición.
∏

zj converge zj → 1 cuando j → ∞.

Proposición. Sean 1 + bj = zj ̸∈ (−∞, 0 ]. Entonces
∏

(1 + bj)

converge ⇐⇒
∑

log(1 + bj) converge, donde log significa la rama

principal, | arg log z | < π.

3.3. Ejemplo.
∏

(−1)j no converge, pero
∏

|(−1)j| śı converge!

Definición. Decimos que
∏

(1 + bj) converge absolutamente cuando∑
log(1 + bj) converge absolutamente.

Proposición.
∏

(1 + bj) converge absolutamente ⇐⇒∑
bj converge absolutamente.

FACTORIZACION DE WEIERSTRASS

Aunque la representación de una función holomorfa f(z) =
∑∞

0 cjz
j

es útil para muchas cosas, da poca información sobre los ceros de f .
Para polinomios, tenemos p(z) = (z−a1)(z−a2) · · · (z−an) pero por
lo que ya sabemos de productos, seŕıa mejor escribir

c(1− z

a1
)(1− z

a2
) · · ·

Igual que con el estudio de las fracciones parciales, no podemos es-
perar que

∏
(1− z/aj) converja siempre.

Ejemplo. sen πz debeŕıa tener factores 1−z/j pero
∏
(1−z/j) diverge

cuando z ̸= 0.
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3.4. Se ve que∏
(1− z

aj
) converge absolutamente, y uniformemente en compactos

⇐⇒
∑ 1

aj
converge absolutamente.

Esto pasará cuando hay “pocos” ceros (pensar en aj = j2 o aj = 2j).
La rapidez de que los ceros tienden al infinito es una forma de medir
el “tamaño” de una función entera.

Definición. Sean aj → ∞ (valores no necesariamente distintos). El
exponente de convergencia de la sucesión {aj} es el mı́nimo entero µ
tal que ∑ 1

|aj|µ+1
< ∞.

Otra medida de una función entera es su tasa de crecimiento. Supo-
niendo que

|f(z)| ≤ ea|z|
λ

para |z| grande, entonces log |f | ≤ a|z|λ; log log |f | ≤ log a+λ log |z|;

log log |f(z)|
log |z|

≤ λ+
log a

log |z|
≤ λ+ ϵ

para |z| grande.

Definición. El orden de una función f ∈ H(C) es el mı́nimo número
λ tal que (∀ϵ > 0)(∀z grande)

|f(z)| ≤ e|z|
λ+ϵ

.

Si no existe tal número, el orden es λ = ∞. Tenemos

λ = ĺım sup
z→∞

log log |f(z)|
log |z|

.

Cuando λ < ∞, el tipo de f es el mı́nimo a tal que (∀ϵ > 0)(∀z grande)

|f(z)| ≤ e(a+ϵ)|z|λ .

Ejemplo. sen z tiene orden 1; sen 2z tiene orden 1; sen2 z tiene orden
1; sen z2 tiene orden 2.
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3.5. Definición. Un producto canónico para la sucesión {aj} es cualquiera
de la forma

∞∏
1

(
1− z

aj

)
e

z
aj

+ 1
2
( z
aj

)2+ 1
3
( z
aj

)3+···+ 1
mj

( z
aj

)mj

.

Depende de la elección de los grados mj de los polinomios pmj
(z/aj).

Con la termı́noloǵıa de un factor canónico, es decir,

E0(u) = 1− u,

Em(u) = (1− u)epm(u) = (1− u)eu+
1
2
u2+ 1

3
u3+···+ 1

m
um

(m ≥ 1),

un producto canónico es
∏∞

1 Emj
(z/aj).

Teorema. (Factorización de Weierstrass) (a) Sea aj → ∞. Entonces
existe una función entera cuyos ceros son precisamente estos valores
aj (repetidos según su multiplicidad).
(b) Sea f ∈ H(C). Entonces existen enteros m, mj y una función
entera g tales que

f(z) = zmeg(z)
∞∏

j=m+1

(
1− z

aj

)
e

z
aj

+ 1
2
( z
aj

)2+···+ 1
mj

( z
aj

)mj

.

Corolario. Sea f ∈ M(C). Entonces existen g1, g2 ∈ H(C) tales que
f = g1/g2.

Ejemplo. cos πz =
∏

m impar

(1− 2z

m
)e2z/m

Nota. Hay resultados similares para H(D) y M(D) para cualquier
dominio D ⊆ C.

Definición. Sea aj → ∞ y supóngase que {aj} tiene exponente de
convergencia finito µ. Entonces decimos que el producto canónico
para {aj} es

∏
Eµ(z/aj).

Definición. Si f ∈ H(C) y si los ceros {aj} de f tienen exponen-
te de convergencia finito y si la función g(z) en la factorización de
Weierstrass es un polinomio, entonces decimos que el género de f es

µ = máx( exp. de conv. de {aj}, grad(g) ).
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Teorema. (de Hadamard) Sea f ∈ H(C) de género µ y orden λ.
Entonces

µ ≤ λ ≤ µ+ 1.

(se omite la demostración)

En particular, si f es una función entera de orden 1 (o sea, de creci-
miento no más que exponencial), entonces f admite una factorización
sin el factor eg(z),
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